Chemistry 372

Pre-lab Questions Lab #2: Rotational/Vibrational Spectrscopy

The pre-lab questions and the data analysis for this lab are quite involved. But take heart – the lab itself is not too time consuming! I suggest tackling the data analysis during the lab session to help cut down on your lab report time.

1. Given that $R_e = 156.0 \text{ pm}$ and $k = 250.0 \text{ N} \cdot \text{m}^{-1}$ for ${}^7\text{Li}{}^{19}\text{F}$, calculate $\tilde{\nu}_0$ and \tilde{B} . Predict the vibrational/rotational spectrum of ${}^7\text{Li}{}^{19}\text{F}$ (see Example 13-3 in McQuarrie).

2. Using Equation 13.10 (in McQuarrie), determine the energy levels of ${}^{7}Li^{19}F$ in for v = 0 and v = 1. (Do this for the first 5 rotational levels).

3. Using Equations 13.12 and 13.13, determine the frequencies of the first four lines in the R and P branches of ⁷Li¹⁹F.

- 4. For the R branch transitions:
 - a. Show how Equation (14) was obtained from Equations (12).
 - b. Show that substituting n = J + 1 into Equation (16) gives Equation (18). All of the equations in this problem refer to the lab handout.

5. Should ³⁵Cl/³⁷Cl substitution affect v_o more or less than H/D substitution? Why? (Hint: Use Equation (6) in the lab handout to calculate the reduced masses in kg of H³⁵Cl, H³⁷Cl, D³⁵Cl, and D³⁷Cl. Then look at the dependence of v_o on the reduced mass in Equation (7). Even though you don't know k, you can make a qualitative judgment.)